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NOMENCLATURE

blade coning angle measured from hub plane, rad (or deg)

longitudinal first-harmonic flapping coefficient measured from hub plane
and in wind-hub system, rad (or deg)

longitudinal first-harmonic flapping coefficient measured from hub plane
and in hub-body system, rad (or deg)

lateral cyclic pitch measured from hub plane and in wind-hub system,

rad (or deg)

lateral cyclic pitch measured from hub plane and in hub-body system,

rad (or deg)

lateral first-harmonic
in wind-hub system,

lateral first-harmonic
in hub-body system,

flapping coefficient measured from hub plane and
rad (or deg)

flapping coefficient measured from hub plane and
rad (or deg)

longitudinal cyclic pitch measured from hub plane and in wind-hub

system, rad (or deg)

longitudinal cyclic pitch measured from hub plane and in hub-body system,

rad (or deg)

blade chord, m

flapping hinge offset, m

blade moment of inertia about flapping hinge, kg-m?

pitch-flap coupling ratio, & tan 84

flapping hinge restraint, N-m/rad

blade mass moment about the flapping hinge, kg-m

number of blade

aircraft roll rate in hub-body system, rad/sec

aircraft roll acceleration, rad/sec?

aircraft roll rate in wind-hub system, rad/sec, Py =

p cos B+ q sin B8
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ratio of flapping frequency to rotor system angular velocity

aircraft pitch rate in hub-body system, rad/sec

aircraft pitch acceleration, rad/sec?

aircraft pitch rate in wind-hub system, rad/sec,

q, = -P sin Bw + q cos Bw

radial station of the blade element measured from the flapping
hinge, m

rotor radius, m
uniform induced velocity, m/sec

true airspeed, m/sec

1

. . . . e +r
nondimensional radial station of the blade element, x 4 B

wind-hub system

hub-body system

hub plane angle of attack, deg

blade flapping angle measured from hub plane, rad (or deg)

derivative of flapping with respect to time, B 2 %%
d2g
at?

differential collective flapping (only for even-bladed rotors)

second derivative of flapping with respect to time, é 4

nth order longitudinal cyclic flapping
nth order lateral cyclic flapping

collective flapping (coning)

multiblade flapping coordinates

iv



Bw rotor sideslip angle, that is, the angle between X and xé, deg
RY
Y Lock number, A PAch
Ig
6A lateral control displacement, cm
SL longitudinal control displacement, cm
e e
R

3] blade pitch angle measured from hub plane,

6 =65 - A, cos y - By, siny + K8, - KyB, rad (or deg)
L damping ratio
6o blade-root collective pitch measured from hub plane, rad (or deg)
8t total blade twist (tip with respect to root), deg

V sin a - vy
A inflow ratio,
QR
advance ratio Vcos a

H v * TOR
P air density, kg/m3
C rotor solidity ratio
) control advance angle, deg
Y azimuth angle measured from downwind in the sense of rotor rotation,

rad (or deg)
V' azimuth angle measured from -x; in the sense of rotor rotation,

rad (or deg)
wh undamped natural frequency, rad/sec
9] rotor system angular velocity, rad/sec
Subscript

s.s. steady state






EFFECTS OF PRIMARY ROTOR PARAMETERS ON FLAPPING DYNAMICS
Robert T. N. Chen

Ames Research Center

SUMMARY

An analysis has been made to study the effects of flapping dynamics of
four main rotor design features that influence the agility, stability, and
operational safety of helicopters. The parameters include flapping hinge
offset, flapping hinge restraint, pitch-flap coupling, and blade Lock number.
First, the flapping equations of motion are derived that explicitly contain
the design parameters. The dynamic equations are then developed for the tip-
path plane, and the influence of individual and combined variations in the
design parameters determined.

The analysis includes a study of the steady-state flapping response with
respect to control input and aircraft angular rate which leads to a feedforward
control law for control decoupling through cross feed, and a feedback control
law to decouple the steady~state flapping response. The condition for achiev-
ing perfect decoupling of the flapping response due to aircraft pitch and roll
rates without using feedback control is also found for the hover case.

The analysis also indicates that the frequency of the regressing flapping
mode of the rotor system can, for some designs, become low enough to require
consideration in the assessment of handling characteristics (less than 2 Hz).
This occurs for rotors with a large effective hinge offset and with heavy rotor
blades.

INTRODUCTION

Continual improvement is sought in the inherent agility and stability of
the helicopter to expand its operational capabilities while providing adequate
safety margins. Recently, considerable emphasis has been placed on helicopter
main rotor design features to enhance control moments and stability. Improve-
ments in these areas are required, for instance, to permit single pilot commer-
cial operation under instrument flight rules (IFR), and to provide the agility
and maneuverability essential for nap-of-the-earth flight. The important
design features include several that increase control moments by providing a
direct hub moment in addition to that generated by thrust vector tilt. These
features are the hingeless rotor (ref. 1) and the stiffened flapping hinge for
the teetering rotor system (ref. 2). To improve the stability in forward
flight, particularly with the hingeless rotor, consideration has been given to
the use of mechanical means such as pitch-flap coupling (ref. 3). Safety of
flight considerations, particularly for single-engine helicopters, leads to the
high rotor inertia concept (ref. 4) to eliminate or reduce the dead man's
height-velocity region.



Specific direct requirements may be achieved through the use of these
main rotor design features. However, side effects, such as inter-axis cou-
pling (ref. 5) and control response lag due to rotor dynamics, can adversely
affect handling qualities. Insight on the potential impact of these design
features on handling characteristics can be gained through a detailed examina-
tion of their effects on flapping dynamics. The analytical study reported
herein provides this insight through consideration of the effects of large
variation of flapping hinge offset, flapping hinge restraint, blade Lock
number, and pitch-flap coupling on the flapping dynamics. Special emphasis
was placed on determining the effects of these four design parameters on the
tip-path plane dynamics and on the coupling of the longitudinal and lateral
flapping due to control input and due to pitch and roll motion.

FLAPPING EQUATION OF MOTION

The flapping equation of motion was derived explicitly for a rotor system
with the four parameters of interest, as shown in figure 1: the stiffness of
the flapping hinge, K,; the effective hinge offset, e; the blade Lock number,
vy; and the pitch-flap coupling, K;.

To develop analytical expressions that may provide a better insight into
the parametric effects, many simplifications and assumptions similar to those
used for the "classical" equations (ref. 6) were used. They are:

1. Rotor blade was rigid in bending and torsion, and the twist of the
blade was linear.

2. Both the flapping angle and inflow angle were assumed to be small and
the analysis utilized a simple strip theory.

3. The effects of the aircraft motion on the blade flapping were limited
to those due to the angular acceleration P and §, the angular rate p, q, and
the normal acceleration.

4. The reversed flow region was ignored and the compressibility and stall
effects disregarded.

5. The inflow was assumed to be uniform and no inflow dynamics were used.
6. The tip loss factor was assumed to be 1.

Because of these assumptions and simplifications, the results of the anal-
ysis were valid only for a limited range of flight conditions. Nevertheless,
a previous study (ref. 7) has shown that this type of analysis is valid for
stability and control investigations of the rotorcraft up to an advance ratio
of approximately 0.3.

The development of the flapping equation of motion as described in appen-
dix A was rather elementary and straightforward. The wind-hub coordinate



system, Xg, Ygs Zg» aS depicted in figure 2, was employed as the basic frame
of reference. In this coordinate system, xg, yg lie on the hub plane of the
rotor, and the Xg—Zg plane contains the relative wind.

For nonteetering rotor systems, the flapping equation for a single blade
was obtained by summing the moments due to aerodynamic forces acting on the
blade, the centrifugal force, Coriolis, inertia, restraint forces, and the
blade weight about the flapping hinge. The terms containing the hinge offset

were retained up to the second power. The result as derived in appendix A is
shown in equation (1).
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p cos B, + q sin B,

Nal
I

-p sin B, + q cos By

For a two-bladed teetering rotor, the flapping equation was derived from equa-
tion (1) using the following constraints:

e =0 82=—81
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The result is shown in the following:
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To gain a better insight into the dynamics of the flapping motion, equa-
tion (1) will be transformed into a nonrotating coordinate system using the
multibladed coordinate transformation (ref. 8), that is,

k
= _1y1 .
B; = Bo + Bd( D+ + nz=:1 Bnc cos ny. + an sin ny,

i=1,2,3,...,N (3)

where
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Then, as shown in appendix B, the flapping equation (1) in the rotating coor-
dinate system may be transformed into the nonrotating coordinate system to
yield:

B+ DB +KB=f (4)

Tables 1 and 2 show the flapping equation in the nonrotating coordinate
system for the three-bladed and four-bladed rotor systems, respectively. From
these tables, the following observations may be made:

(a) In nonrotating coordinates, the flapping equations also contain peri-
odic coefficients in forward flight. The basic frequency of the periodicity
is directly related to the number of blades in the rotor; the basic frequency
is 3 per rev for the three-bladed rotor and 2 per rev for the four-bladed
rotor. The highest frequency in the periodic terms is N per rev for an
N-bladed rotor. In general, it can be shown (as previously stated in ref. 9)
that for 3, 5, 7, . . . bladed rotors, the basic frequency is 3, 5, 7, « .+ o
respectively; for 4, 6, 8, . . . bladed rotors, the corresponding basic fre-
quency is 2, 3, 4, . . ..



(b) The amplitudes of the periodic terms in the damping matrix are func-
tions of ¥y, €, and u; they are independent of K_ and K,. At a given advance
ratio, the lower the Lock number of the blade and the larger the hinge offset,
the smaller the amplitudes of the periodic terms in the damping matrix.

(c) The maximum magnitude of the periodic coefficients in the stiffness
matrix are functions of vy, €, and K;. Again the hinge restraint has no direct
impact on the periodic terms. At a given advance ratio, a decrease in the
blade Lock number will decrease the amplitude of the periodic terms in the
stiffness matrix. However, the combined effect of ¢ and K, 1is more compli-
cated. For K, = 0, an increase in the hinge offset will reduce the effect of
the periodic terms.

(d) The parametric effect on the periodic terms in the forcing functions
is similar to that on the damping terms for a given set of control positions,
Bos Aigs Bics and for the twist of the blade Gt.

The above observations may provide a better insight in assessing the qual-
ity of approximation when the time varying flapping equations (expressed in
the nonrotating coordinate system) in forward flight are simplified to time
invariant system of equations by dropping the periodic terms. At p = 0, of
course, there will be no periodic terms in these equations.

With the periodic terms dropped, the first three equations in table 2 for
N =4 collapse to those in table 1 for N = 3; the differential coning equa-
tion (the fourth equation) becomes uncoupled and with zero forcing function.
The set of the first three equations is identical to the first-harmonic approx-
imation also known as the "tip-path plane" equation as discussed in the next
section.

TIP-PATH PLANE DYNAMICS

The mathematical procedure for approximating the flapping equation by per-
forming the multiblade coordinate transformation and then dropping the periodic
terms as discussed in the previous section is identical to the classical
method of approximating the flapping by the: first-~harmonic terms with time
varying coefficients, that is,

B(t) = ao(t) - a,(t)cos ¥ - b,y (t)sin ¥ (5)

Equating, respectively, the constant term, and the terms with sin ¢ and
cos ¥ 1in the equation (1) using (5), yields the tip-path plane dynamic
equations:

4+ Da+Ra=f (6)

~ ~

The damping matrix D, the stiffness matrix K, and the forcing function f
are shown in table 3. This set of equations is identical to that in table 1,
with periodic terms dropped. The identity is readily seen by noting that



a, = Bgs a3 = —Bieo and b; = -8,4, and by performing a similarity transforma-
tion for the dynamic equations.

If the "tip-path plane' representation procedure described above is
extended to approximate the flapping equation for the teetering rotor, equa-
tion (2) becomes
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where
K
vyK
P2 = | + —p + —-
and
B(t) = ap - ai1(t)cos ¥ - bi(t)sin ¥ (8)

Note that in equation (8), which approximates the flapping, the coning angle
ap 1is a constant (a precone angle). The tip~path plane approximation for a
two-bladed rotor is generally valid for only low frequency excitation; hence,
the terms containing aircraft angular acceleration p and ¢ 1in equation (7)
may be omitted.

Equation (7) is identical to the lower 2 X 2 block shown in table 3 with
¢ set to zero. The quality of this approximation to the flapping equation of
a teetering rotor system has not been fully evaluated. A preliminary numeri-
cal assessment showed that for u > 0.4, the approximation in terms of sta-
bility characteristics could deteriorate rapidly, especially when K; =K, = O.
A further evaluation is therefore needed to fully explore its limitations.

‘of course, at this condition, the validity of the model has already been
violated, as described earlier in the report.



The dynamic characteristics of the tip-path plane as governed by the
equations in table 3 will now be examined. There are three natural modes in
the tip-path plane dynamics: coning, advancing, and regressing. Of these,
the regressing flapping mode is most important concerning the effect of rotor
dynamics on the handling characteristics of the rotorcraft. The regressing
flapping mode is the lowest frequency mode of the three and it has a tendency
to couple into the fuselage modes. The other two modes (the coning and the
advancing) have higher undamped natural frequencies, respectively, on the order
of rotating frequency and twice the rotating frequency of the rotor system;
their impact on the rotorcraft handling characteristics is therefore consider—
ably less significant.

To gain insight into the effects of the parametric variations in the gen—
eral rotor system on the modal characteristics, hover conditions will be con-
sidered first. At hover, the coning equation is decoupled as evidenced in
table 3. The coning mode has the undamped natural frequency wh. and the
damping ratio Cc’ respectively, as follows:

uw K eM YK, 1/2
¢ -pal1+ 62+ B (1—55)
0 IBQ IB 8 3 (9)
= A _l;_< _8 2)
Cc z 4 16p 1 3 £ + 2¢

The undamped natural frequency and the damping ratio for the advancing and
regressing modes are, respectively, given by

w 1/2
:A=(1+P2+2Pvl—52) |
r’ . | (10a)
G T ~
A ,dnA/:é J
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Figures 3 through 5 show the effect of individual parametric variation in
hinge offset, hinge restraint, and the pitch-flap feedback on the eigenvalues
of the advancing and regressing modes. The effect on the blade Lock number is
also shown in these figures which illustrate that v 1is the most significant
parameter in reducing the undamped natural frequency of the regressing flapping
mode. If we concentrate on the region ”nR/i $ 0.5 (which corresponds to the
region with undamped natural frequency of the regressing flapping mode of no
more than 2.5 Hz for a 300 rpm main rotor system), the effect of a large hinge
of fset is also very significant in reducing wpr up to vy = 12. Thus, for a



small y and a large ¢, significant impact of the flapping dynamics on the
handling characteristics of the rotorcraft can be expected.

In forward flight, the coning equation is no longer decoupled and the
modal characteristics of the tip-path plane dynamics become much more compli-
cated. Figures 6 through 9 show the effect of advance ratio on the eigenvalues
of the three modes for four sets of parameter values, respectively:

K =€=K1=0

6
e =015, K=K =0
g
_=0.225, €=K =0
IBQ
Ry =0.225, Ky =¢e=0

As indicated in these figures, the tip-path plane dynamic modes are relatively
insensitive to the variation in the advance ratio (up to the validity of
the math model, u = 0.3 to 0.4) for y < 8. With a large hinge offset, the
eigenvalues of the TPP modes are almost invariant over the entire range of
Lock number considered.

As described earlier, the advancing mode of the TPP dynamics is on the
order of 2 per rev (i.e., on the order of 10 Hz for a 300 rpm rotor system).
Thus, the model will not be useful for real-time simulation if the computa-
tional cycle time is larger than 47/5% (or on the order of 0.050 sec for a
300 rpm rotor system). If the budgeted cycle time cannot be reduced, some
simplified models that will approximate the low frequency characteristics of
the TPP dynamics may be desirable. A simple model that matches well with the
equations in table 3 in the low frequency region may be obtained by simply
setting é = 0, as suggested in reference 9. The result is

a = - D'Ra + D7'E (11)

Figures 10 through 12 show the comparison of characteristic roots of the
reduced order model and the unreduced model at hover. For a forward flight at
p = 0.3, their characteristic roots are shown in table 4. The fidelity in the
transient response is shown in figures 13 and 14.

CONTROL PHASING AND FLAPPING RESPONSE DECOUPLING

It is evident from equation (6) and table 3 that the flapping frequency
will generally be different from the rotational frequency of the rotor system.
Therefore, the maximum flapping response to a cyclic-control input will no
longer exhibit 90° lag in phase. Proper control phasing or control mixing will
be required to achieve the desired flapping decoupling; a longitudinal control



input produces only a steady-state longitudinal flapping, and a lateral control
input will produce only the lateral flapping response.

To relate the required control phasing (or control mixing) to the rotor
system parameters, consider first the steady-state solution of TPP variables
at hover. From equation (6), the steady-state responses of the TPP variables
ap, ai, and by to the control inputs and the fuselage angular velocity Py
and q,, may be obtained using

ag =KL (12)

At hover, equation (12) becomes
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In equations (13b) and (13c), the terms containing the fuselage angular accel-
erations, ﬁ and é, have been dropped to be consistent with the steady-state
solution of the TPP variables. From these equations, it is interesting to
note that, for the special case P? =1, ¢ = 0, the steady-state responses of
the longitudinal and lateral flapping to the cyclic-control inputs reduce to
the well known results:

10



Feedforward Control Law

We will now develop the feedforward control law to achieve an appropriate
control mixing for decoupling the steady-state flapping response to control
displacements in the cockpit. To facilitate the flight-control system mech-
anization, the development will be based on the hub-body coordinate system.

In this coordinate system, the cyclic pitch will be denoted by A g and B,
and the tip-path plane tilt by a g and bls’ They relate to those in the wind-
hub system by the transformation:

A1C = A1s cos Bw ~ Bls sin Bw
Byc = Ajg sin B, + By5 cos B,
a, = a,  cos Bw - blS sin Bw
b, = aq4 sin B, + b4 cos By

Consider the hovering flight first. At hover, the longitudinal and lat-
eral flapping depend on both A,. and B,., but not on the collective pitch;
the coning depends only on the collective pitch as evident from equations (13a),
(13b), and (13c). Therefore, to decouple the steady-state flapping response,
a control mixing of the following form will be satisfactory.

oA oA

ls ls
A = 5, + s
1ls
25, AT I L
aBlS aBlS s
Bis =35, At a5, L

In the above equations, §, and §; are, respectively, the lateral and longi-
tudinal control displacement at the cockpit. The control gearings

34, ¢ 3A, ¢ 3B, 3B, ¢

38, ' 86y, ' 38, > 86y

for mixing the cyclic pitch may be chosen to satisfy a set of specified flap-
ping response characteristics. Let the desired decoupled steady-state
responses be

da, e Bbrg .
86, 1 36
ablS K 8818 0
a6, 2 96y

where the parameters ki and k,; are the desired levels of control sensitivity.

11



From the previous static cyclic flapping equation, the control gearings
may be readily found to be

Bis 1 - (8/3)e + 2¢2 )
36, - 1 - (4/3)¢ 2
Brs 8@ - 1)
= k_2
BSB Y[l - (4/3)5]
| (14)
BAIS ~ 8(P2 _ 1) kl

36y v[L - (4/3)e]

Bis  _[1 - (8/3)e + 2¢2]
a(SL B 1 - (4/3)8

ki

with

K eM., vk
P2-1=I§2+IB+81(1—%5)
B B

Alternately, if the control gearings 9A,./38p and 3B,4/36; have been
selected, decoupling the steady-state flapping may be achieved by appropriately
phasing the cyclic-pitch control. The required control phasing (sometimes

called control advance angle) in the sense of rotor rotation is given by
¢ = tan" [ (9B, ,/384) /(3A15/38,)] or

= tan-l P? -1
b= tan [}[(1/8) YL (e2/4>1] (1

Physically, the required control advance angle may be seen even more clearly
by considering the flapping motion in the rotational coordinate. At hover,

the flapping motion is governed by a second-order time invariant system with a
natural frequency of PQ and a damping ratjo of +/P[(1/16) -~ (&/3) + (£2/8)],
as evident from equation (1). At the excitation frequency £, at which the
cyclic pitch applies, the flapping response will have (90° - ¢) lag in phase.
For P =1, when the flapping frequency is equal to the rotational frequency,
then ¢ = 0, as is well known.

In forward flight, the coning is coupled to the cyclic flapping. To
achieve a perfect decoupling a control law which utilizes a mixing of the
cyclic stick to the collective pitch-as well as the cyclic pitch is required.
The development of the control law is given in appendix C.

For a two-bladed teetering rotor system, a direct application of equa-
tion (14) to equation (7) results in the following feedforward control law:

12



BA ;g OAg

38, 36,
kp &

3B, 3B,

38, 58,

8 P2 -1 + (yK1u2/16)
k = k)
z Y 1+ (u?/2)
B 2 2 <16)
8 P -1+ (3/16)YK1u 1 - (u2/2)
= Ky ol anessseenrdl L3
Y I+ (3/2)u? 1+ (3/2)u

1t is interesting to note that equation (16) reduces to equation (14) at hover.

The decoupling control law equation (14) has been used previously in the
nap-of-the-earth flight simulation (ref. 5) because of its simplicity in com-
puter mechanization. The results have provided an approximation adequate for
a speed range from hover up to an advance ratio of 0.25.

Decoupling Flapping Response Due to Aircraft Angular Rate

In the preceding discussion, attention has been focused on the decoupling
of the flapping response to the control input. The other important aspect of
decoupling the flapping response to the aircraft angular rate will now be dis-
cussed. Unlike fixed-wing aircraft, for which pitch-roll coupling is rare
except in high angle-of-attack operations, rotorcraft often exhibit undesirable
pitch-roll coupling due to aircraft angular motion. For example, in response
to a roll rate to the right, the TPP tilts to the left to provide the desired
roll damping of the aircraft; however, as is evident from equation (13b), the
TPP plane can also accompany a tilt in the for-aft direction, which produces
an undesirable pitching moment. Experiment (ref, 5) has indicated that this
kind of pitch-roll coupling can adversely affect helicopter flying qualities,
especially in demanding tasks such as in NOE or IFR operations. It is desir-
able, therefore, that the nature of the coupling in flapping due to aircraft
angular rate be examined and a means of reducing the coupling be studied.

First, we shall examine the effect of the primary design parameters on
the coupling. Consider the hover case. From equations (13b) and (13c), the
steady-state response of the longitudinal and lateral flapping to the aircraft
angular rate in pitch and roll is given by

13
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eM
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=0 and P = 1, equation (17) reduces to the following

a

by

S.S.

1 _ 16

2 'Y Py
_l6 -1

Y& Q qw

(18)

It is clear from equation (17) that either a pitch rate or a roll rate input
will produce steady-state responses in both longitudinal and lateral flapping
unless the following condition is satisfied:

p? -

where

When the decoupling condition equation (19)

14

LM 1A/Y) - (e/31LA/E) = (2/3e + (€7/D)]

P2

=1+

Ig

YK
B 8 1 4
Q2+IB+8(1_3)

is met, then

aals.s. -0
Bpw
abls s
S _ 9
qu

(19)



and

) - 1/Q0(v/4) + (v/8)(P? - 1)] (20)

(P2 - 1)2 + (Y2/4)[(1/4) - (2/3)e + (€2/2)]2

The physical meaning of the decoupling condition is given in the following:

Consider the steady-state response of the longitudinal flapping a; due
to aircraft roll rate Py From equation (17),

i, Pw/9 y2(l_2_LefL_«
Tsese TR DT (/W) [(A/4) - (2/3e +(2 /D12 | b <4 37772 )(4 3)

eM

- 22 - 11 +-E—§ (21)
3

Note that b;g o  due to gqy has the identical expression. From the deriva-
tion of the flapping equation, it can be seen that the first term in brackets
in equation (21) is due to aerodynamic source while the second term is due to
inertia. Thus, for P =1 (the flapping frequency being 1 per rev), the iner-
tia term vanishes, leaving only the aerodynamic contribution; in particular,
for e =0and P =1, a; = pw/Q, as shown earlier in equation (18). How-
ever, the flapping frequgﬁgi may be changed appropriately by varying the hinge
restraint, pitch-flap coupling, and hinge offset to achieve the level of iner-
tia effect that offsets that due to aerodynamics. The condition for the iner-
tia effect to cancel perfectly with the aerodynamic effect is essentially what
equation (19) physically means.

It may be instructive to examine in some detail some special cases of the
decoupling condition, equation (19), and the associated flapping responses,
equation (20).

1. Rotor system with no flapping hinge offset— With e = 0, the decou-
pling condition reduces to

2

2 _ - X
P2 -1 = 1= (22a)
or
YK, K 2
+—B_ X (22b)
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and the associated steady-state flapping becomes

aals.s. _ abls.s.
qu Bpw
16
-- = (23)

It is interesting to note that the condition for decoupling the flapping
responses due to aircraft angular rates p and q for the center-hinged rotor
cannot be met without using either the pitch-flap coupling or hinge restraint,
or both, as is evident from equation (18). Furthermore, when the decoupling
condition is met, the flapping responses are identical to those for P =1,
irrespective of the values for K, and KB.

Figure 15 shows the pitch-flap coupling required to decouple the steady-
state flapping response due to aircraft angular rate, p and q, for a center-
hinged rotor system. The required pitch-flap coupling is shown as a function
of the Lock number and the hinge restraint. As can be seen from this figure,
the value of the pitch-flap coupling in the sense of reducing the pitch for
positive flapping (upward) increases as vy increases and decreases somewhat
as KB increases.

2. Rotor system without flapping hinge restraint— With K
tion (23) becomes

= 0, equa-

B

e ( d ) _ G LA/E) = (£/3)]1A/4) = (2/3)e + (£2/2)]
I

+—= (1 -2 24
5 € 2[1 + (eMg/1g)] (24)

8 3

Consider that the rectangular blade has a uniform mass distribution. Then
eMg/Ig = 1.5 €. The pitch-flap coupling required to decouple the steady-state
flapping response to the aircraft angular rate is obtained from equation (24)
as follows:

y 1 - (8/3)e + 2¢? 12 €
16 1 + (3/2)¢ vy 1 - (4/3)¢

Ky = (25)

Figure 16 shows the pitch-flap coupling required to decouple the steady-state
flapping due to aircraft angular rate, p and q, for K, = 0. The required
pitch-flap coupling is shown as a function of the Lock number and the hinge
offset. Note that for e = 0, it is identical with the curve in figure 15 for
KB/I Q% = 0. However, as hinge offset increases, the required pitch-flap cou-
pling differs substantially from that for hinge restraint with equivalent
hinge offset (e.g., KB/IBQ2 = 0.225 has an equivalent hinge offset of

e = 0.15, as far as flapping frequency is concerned).

Figure 17 depicts the amount of hinge offset required to decouple the
flapping response for a set of pitch-flap couplings. Note that for K; = 0,

16



the amount of hinge offset varies almost linearly with Lock number from
e =0.019 for y=2 to e =0.145 for y = 8.

Aside from choosing a set of appropriate design parameters to decouple
the steady-state flapping response due to aircraft angular rate, as discussed
above, a feedback control law may also be used to achieve the same objective.
Consider a control law of the form

AlC P
= K, (26)

1c W

which feeds back aircraft angular rate, p and g, to both longitudinal and lat-
eral cyclic. The feedback gain matrix Kf is to be chosen to achieve the
desired decoupling characteristics:

ai 0 ki P
b k 0
' S.8. : b

In equation (27), the parameter ki is a desired sensitivity. Using equa-
tions (13b) and (13c), it can be shown that the decoupling control law that
achieves the decoupling characteristics of equation (27) is given by

_z<l+iM_6) r(E-9)
Q I a\8 6
3
1 € g
+yk3<§—§+7) +k,(P* - 1)
K = -1 (28)
£ y[(1/8) - (e/6)] oM
_l(l_i) g(1+_6>
o\8 ~ 6 9 I
B
2
+ k,(P% - 1) —yks(%—%+—%—>
L .

Note that the sensitivity parameter k, in equation (27) 1is closely
related to the contribution of the main rotor system to the vehicle's damping
in pitch and roll. Therefore, equation (28) provides an insight into the
relationship among the decoupling control gains needed, the vehicle's damping
in pitch and roll, and the rotor system parameters.
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CONCLUDING REMARKS

The flapping equation of motion for a main rotor system that consists of
four primary design parameters — flapping hinge restraint, flapping hinge
offset, blade Lock number, and pitch-flap coupling — has been developed in this
paper. Both teetering and nonteetering cases were considered in the develop-
ment and the equation was presented in both rotating and nonrotating coordinate
systems.

Numerical examination of the tip-path plane dynamics indicated that the
frequency of the regressing flapping mode was within the pilot's effective
frequency range (less than 2 Hz) when the Lock number was small (around 6 or
less), especially when the hinge offset was large (¢ > 0.07). It was recom-
mended, therefore, that the effects of flapping dynamics should be considered
in assessing the flight dynamics and handling qualities of hingeless rotor
helicopters or helicopters with heavy rotor blades.

Study of the steady-state flapping response due to aircraft angular rate
in pitch and roll at hover showed that there exists a condition for achieving
a perfect decoupling, that is, roll rate results only in lateral flapping and
pitch rate only in longitudinal flapping. The condition should prove useful
in selecting appropriate values of the four design parameters to minimize
undesirable pitch-roll coupling of helicopter flight dynamics, especially in
demanding tasks such as nap-of-the-earth flight. A control law that feeds
back aircraft angular rate in pitch and roll to both longitudinal and lateral
cyclic can also be used to decouple the steady-state flapping response. It
provides an insight into the relationship among the decoupling control gains
needed, the vehicle's damping in pitch and roll, and the rotor system
parameters.

The cyclic control phasing or control mixing necessary for decoupling the
steady-state response of the longitudinal and lateral flapping has been devel-
oped for hover and for forward flight. Because of its simplicity, the decou-
pling control law for hovering flight has been used previously in a ground
simulation. It has provided an accuracy adequate for the entire low speed
flight regime.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, May 11, 1979
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APPENDIX A

DERIVATION OF FLAPPING EQUATION

Using the assumptions described in "Flapping Equation of Motion" (p. 2

of this report), the flapping equation was derived by summing the moments at
the flapping hinge.

where

MA + MCF + MI + MCor. + MR + MBA + MBL + MW =0 . (AD)

moment due to aerodynamic force acting on the blade

moment due to the centrifugal force, MCF = —QZ[IB cos B + eMB]sin B

moment due to blade inertia, MI = —IBB
moment due to Coriolis acceleration,
Mcor., = 2[IB + eMB](pQ cos y' - q0 sin ¥")

restraint moment, MR = —KBB

moment due to body angular acceleration, MBA = IB(ﬁ sin y' + 4 cos ¢')

moment due to body normal acceleration, M . = MB(W - uq + pv)

BL

weight moment of the blade about the flapping hinge

The moment due to the aerodynamic force acting on the blade, MA, will now be
derived in the following:

c
6
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At an azimuth station 1y, My, is given by

R-e
= 1
MA .£ dFar

where
dF, = £ (aR)2ac[Ur26 + Uqplpldr'
A2 T VP
and
. & Ur )
T S—2§=e(l—cosﬁ)+usmw+xcoss
% - P q
T - - ‘ _ _ q .
UP=QR A cos R U sin B cos ¥ B(x e)+x[(Q cos Bw+Qsian)31nt,b
(B 4 _ 9 )
(Q sin Bw o cos Bw cosw]
V cos a
A X 59 B
M= TR
>\AVsincL—vi
= QR
)
petr' A e zAl;
X 2~ s e =g B_QB

= - ) - 1 -
§) 99 Alc cos U Blc sin ¢ + xet Kls

For small &R,

UT=x+usm¢

—
]

A = uB cos ¢y - B(x - e) + x[(s% cos Bw +% sin Bw)sinw
- (-g— sin Bw - % cos Bw) cos w]

and M, may be found to be
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M
A Sy vl - e @using - o) +1 (A - e w? sin? ¥
(p/2)ac (OR) 2R? 4 3 2

- 2ue sin ¥) - (1 - s)u2e sin? w] (6o - Ay, cos ¥ - Blc sin )
1 5 1 4
+[—5-(1—e)+z-(1—e)(2usinw—e)

+—13- (1 - e:s)(u2 sin? Y - 2ue sin ¥) —%- (1 - e2)u’e sin? w] St

+[—;— (1 - ¢ +% (1 - €2)(u sin ¢ - €) - (1 - €)eu sin w]x

_{[% (1 - %) +%(1—a3)(2u sin ¢ - €)

+% (1 - 82)(112 sin? ¢ - 2ue sin ¢) - (1 - e)uzg sin? l,b] K,

+[.:1; (1_53)+-;-(1—62)(u sin ¥ - €)

- (1 - €)ue sin w]u cos w}B

—[% (1 -¢€" +-§— (1 - e sin ¥ - 2¢)

% (1 - €2)(2ue sin ¥ - e?) + (1 - e)ue’ sin w]B

+
—
)=

(1 - ¢* +% (1 - ey sin ¢ - ¢€)

=
m

_ ke _ 2vesn o | (R q ., o
> (1 €“)sin w][(p cos BW+Q sin Bw)sulu

P . _a
- (Q sin Bw o cos Bw) cos w] (A2)

Neglecting the terms containing e, %, . . ., the following result is

obtained:
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M
A =lt%_£+psinw(%—e+%usinw—ausinw+%uezsinw):|
(p/2)ac(QR) %R? 3

1 . (1 2
X (eo—A1c cos y - B, sin \,U)+|:§-%+usm w(§—§€

1 1 . 11 .
+§u81nw—2u€51nw)]8t+[3 2€+us:|_ntp

1 e? 1 _e - @ B
x(§—e+7)])\—{[4 3+u51nw3—e+28mw

2
. . 1 . 1
- eu smw+%—u sin W)]K1+[§"%+usln w(i_e

2 2 -
+—€2—)]ucosw}B—[%—%s+§2—+usinw<%—e+€2)]8

+ (% —%) + 1 sin w(é - %)] [(% cos Bw +% sin Bw) sin Y

- (—g— sin B - % cos Bw) cos 11)] (A3)

The flapping equation is then obtained by substituting all the moments into
equation (Al). The result becomes

o912 €? (l_ 2). - & eMg\ 2
B+7[4—3E+2+u3 e+ ¢ sin y| B + IB+l+I—SZ

B

Q° 1 2 ; i i i i
+“—2Y“:Z_%+U(§‘€+%smw-€u sin ¥ + 5y sin lL')Sm I’U]Kl

2
st g)am o))

eM
= 2(1 +I—B> (P2 cos Y' - q sin ') + (p sin v' + q cos U')
B

o m

Mg | M 2
+——I—§—(w—uq+pv)—I—w+—97x{[-}:—%+usinw(%—e+%usinw
B B

. 1 ,
- EM Slnw"’EUEZ sin ll))] (6p - A, cos y - B . sin y) +[%—%+u

1 2 1 . 1 . : 1_1
X(‘Z“§€+§USlan“ZUESlﬂW)San]et+[3 2e+u

x (l - ¢ +l ez)sin \]J] A +1(l - E) [(pQ cos B+ qQ sin B )sin ¥ (A4)
2 2 2\4 3 v v (Continued)
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. 2 .
- (pQ sin B - qf cos Bw) cos w] +% u(g - a) [(pﬂ cos B+ q@ sin B.)
x (1 -cos 2¢) - (p? sin B, - q@ cos By) sin Zw] (A4)
(Concluded)

where the Lock number vy is defined by

A pacR“

g

Y

Equation (A4) may be rewritten in a nondimensional form by defining

zal , _dB
= 1 d®s
BL 5 8="7%

QZB dy?

The result becomes

2 M K
yl|l_2 £ (l_ 2) . 3 e B
+2[4 3e:+2+3 e +e“)u sin V] B+ 1+I +IBQ2

wlil

8

2
y (1_¢ (2_ Yogin o - w4 S sd ) in
+2|:4 5+ \3 e + 7 sin ¥ gusmw+2usmuusmwl<1

- 2
N I A e

eM . q
= 2 (1 + —I—B—>(% cos 1' - g sin Y ') +(—P§ sin ¥' + _Cl_z_ cos ?L")
H 3 o 9

M M
6 . w Y [1 3 (2 1 o )

- —_ —_— —_ — - = 4 —_ - + = g, = - I
(w - uq + pv) .02 + 3 { 773 -ty usind ey sin v

1 £
+—;—U52 sin w)u sin LL](GO - Ay, cos U - B, sin V) + [g_ A
1 _2 1 . 1 . N 1 1
R L RE R M B CER

D

sin R )sin \
w

N =

- 1 - Y(L_ey|(E

+( »3+2L)usm,]k}+2(4 3)[<h_cost+

- (? sin # ——3 cos B )cos ‘L]+l u(g- E)[(R cos & +§ sin B )
o \ 1 w 8 3 o w ! w

x (1 - cos 2¢) - (% sin Bw - 5}- cos Bw) sin 2&] (AS5)
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APPENDIX B

TRANSFORMATION OF FLAPPING EQUATION FROM ROTATING TO NONROTATING

COORDINATE SYSTEMS

In rotating coordinate systems, the flapping equation is given by equa-
(1) and is repeated here.

el _ 2 6_2) 1 z)- SIS S 2

2[(4 3€+2 +u3 e + ¢ smwi Bi+Q P+2u3 zcoswi
K

1 e? , Y% 2 ,

(—2——e+7)sm Zwi:l+7|:u 3—e:)s1n1,bi

(% - e +%2) (1 _ cos 2‘”1)]}81

eM q P p q
2 B W w W, w
Q{2 (1 + —IB )( o sin wi + o cos wi> + _Q2 sin d)i + —QZ cos Lpi

Mg
+ [(v‘:—uq+pv)—g]+%[(

2 2
U €
TT(——E'O-T)(I—COSZUJi]@Q

x|l e | (l_s) ﬁ(l_ i)(
2[(4 3)c:oswi+|.1 373 sin Zwi+4 > e+2 t:oswi

m,

N

2 2
u 1 € . , 1 €
+ 'Z— (E - € + 7) (3 sin IlJi - sin 3\01)} BlC + % [(g - Z)

12, rfl _ e 1(1 s)
+u(2—3€)31nwi+2(3 2>(l—cos2wi)]6t+2[-3——2

+
I

P q
Y 2 \ , W ‘
3 u(3 - E) [—h (1 - cos 24 + = sin Z‘Li] (B1)



where

eM K YK
P2=1+IB+ 062+81(1"%€)
B IB\..;
i = 1, 2) 3: s N
p, = P cos By T @ sin By
q, = 7P sin B, + q cos By

To gain a better insight into the dynamics of the flapping motion equa-
tion (1) will be transformed into a nonrotating coordinate system using the
multibladed coordinate transformation (ref. 9), that is,

k
Bi = By + Bd(—l)1-+ z: Bpe COs nyy + B o sin ny (B2)
n=1
i=1, 2, 3, , N
where
k=3 O - 1) N odd
1
= E—(N - 2) N even
1 N
Bo =ﬁ E Bl
i=1
] & i
By =5 2 ByC-D (Bg = 0, if N odd)
i=1
2 N
Bnc =N z: Bi cos ny,
i=1
2 N
an TN 2 8:i. sin ml)i
i=1
2
b=y =D
Let ER and B be denoted, respectively, by
BR 2 (B1.B2s + .« o BN)T
A T -
é = (BO’BIC’Bls’BZC,BZS’ « v e B(l/2)(N—1)C’ B(l/z)(N—l)S) fOr N = Odd
A T -
= (BO’B]_C’Bls’ e sy 8(1/2)(N—1)C’ 8(1/2) (N—I)S, Bd) for N = even
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Then the transformation equation (B2) may be rewritten by
= 18 (B3)

where, for N = odd

1 cos y; sin cos—i— (N - 1)y, sin% (N - 1)y,
. 1 1
1 cos U3 sin U, cos 5 (N - D, sin > (N - Dy,
T =
1 cos v sin y cos 1 (N - Dy sin 1 (N - Dy
i i 2 i 2 i
1 ‘ in v Low-ny, simia-o
! cos UN sin N coOs 2 wN sin 2 wNJ
and, for N = even
rl cos Y3 sin Y cos% (N - 2)yq sin% (N - v, (—l)1
‘ , 1 .1 2
1 cos Y3 sin V> cos (N - 2)u, sin 3 (N - 2)y, (-1)
T =
1 cos ¢ sin ¥ -+ . cos L (N - 2y sin L (N - 2)y, (—1)i
i i 2 1 2 i
1l cos v sin cos 1 (N - 2)y sin 1 (N - 2)y (—I)N—l
N-1 N-1 2 N- 2 N-1
1 cos ¥ sin ¥ cos = (N - 2y sin & (8 - v (<)Y
L N N 2 N 2 N J
27 . .
‘”i””*?(l‘”’ i=1,2,3, ..., N
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The flapping equation (Al) may now be rewritten in a matrix-vector format

as follows:

where

and

to
e

2

Hh
[

ii—YTQ[(_‘

.. b o2{p?
11

R

A(W) =

B(y) =

2 52) 1
—3—€+T +u<

2
Y[, (L-¢ Ly
2[“(3 2)°°S vt (2

Bp + AWIBy + BOE, =

Aig

Aii
0
rBll
B..
ii
0
f2, . fi’
S - e+ ¢€?

) )
- ¢ +T (1 - cos Zwi,

)\ right-hand side of equation (B-1).

Iy
0
A
0
NN
T
C e £y

) st ‘bi}

e? ,
e -+ —2—)sm Zwi]+

vK, (g
7 |M\3

(B4)

- )sin W,
1

(B4)
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With respect to the nonrotating coordinate system B, the flapping equation
(B4) may be represented by (B5) using the transformation (B3).

B+DB+KB=f (B5)
where
£=1,
D = T'(2T + AT)
K = T-1(T + AT + BT)

To expedite the calculation of the inverse of T, a proper scaling of the
variables B may be made so that

B = T, (B6)

where

-
o

R

for N odd

” r
2] |~ -
Z| o)
Z|N|
L
(]

for N even

/2

N

0 1
VN

b -l

The resultant transformation Ty = TTg is orthogonal. Since

™! = TSI'I'1 = TSZT', the desired simplification in computing T™! is achieved.
Tables 1 and 2 show the results for N = 3 and N = 4, respectively. For

a special case in which K;y = ¢ =0 and p =q =p =gq =0, the equations in

these tables reduce to those previously obtained in reference 8.
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APPENDIX C

FEEDFORWARD CONTROL LAW FOR DECOUPLING FLAPPING RESPONSE

IN FORWARD FLIGHT

From table 3, it is evident that in forward flight the coning is coupled

to the cyclic flapping.
mixing will be required

To achieve a perfect decoupling, a complete control

Consider a feedforward control law of the form

B¢ c
A1S = KD A (c1)
[ Bs L
where ~ ‘
36, 98, 36, W
aac BGA BSL
o BAlS 3A1s BAls
D aac BGA BSL
aBls aBls BAIS
I déc adA BGL |

is the "control mixing' matrix.

The control law is to be selected so as to

achieve a desired decoupling in steady-state response having the sensitivities

k, & ;%3 , kp 8 i;;s s
c A
as follows:
ag ko 0
a,g =10 0
b 0 k

ob
and k, & 218
3dy,
0 [%e
Kk, 8, (€2)
0 81,
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Denote

e

T
(agra,gobig) »  u 2 (8,,A,4,B

|

T
up 2 (8.9,08,)

Let the control effective matrix E be

o, 0 a,
E=02]0 a, 0
o, 0 o

where

and A; and A, account for the effect of inflow due to collective input, that
is,

2
yu (1 %\ 3
=ll_£) 3A ,and Az=——-—(.__€+ )
n=1G- 5 2 \2 7)%,

The steady-state response of the coning and cyclic flapping to control input
is given by
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a = ﬁ_li

ﬁ—lEE

It

s=1
K EKD\_JP

Imposing the desired decoupling characteristics as described in equation (C2),

that is, ag 4. = Sgp, the control law may be found to be
K. = E"!KS
D
It is readily verifiable that
o 0 -a,
1 0,0 = 0,0
gl = - 0 s T2 0 (c3)
Q7 (a0 = 0,0,) &3
—0, 0] a,

and the desired decoupling control law is obtained as described in equa-
tion (C4).
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TABLE 1.- FLAPPING EQUATION IN NONROTATING COORDINATE SYSTEM, N = 3

Dy =0
Ky = 02
P2 = 1

B+ D3f +Kag = £33

yu<K 2
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eM K ¥K
i + 5 —81— (l -4 5)
Ig 1,77 3

B L (8y,8y0nBs)]
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5 -
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“ 1
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1 e? ' yu Ky (1 2
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TABLE 3.- TIP-PATH PLANE EQUATION
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PRIMARY DESIGN PARAMETERS

FLAPPING HINGE OFFSET, e
FLAPPING HINGE RESTRAINT, K;S
PITCH-FLAP COUPLING, 83

acR%

BLADE LOCK NUMBER, v2 ¢ T
i

Figure l.- Main rotor primary design parameters.

DOWNWIND

Figure 2.- Coordinate system for the main rotor.
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Figure 3.- Effect of hinge offset and Lock number on TPP modes at hover.
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Figure 4.- Effect of hinge

o/SY

restraint and Lock number on TPP modes at hover.
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Figure 5.- Effect of pitch-flap coupling and lock number on TPP modes
at hover.
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Figure 7.- Effect of advance ratio on the TPP dynamics, € = 0.15, K
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Figure 8.- Effect of advance ratio on the TPP modes, KB/IBQ2 = 0.225,
e = K]. = 0.
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Figure 9.- Effect of advance ratio on the TPP modes, K, = 0.225, K, = ¢ = 0.
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Figure 10.- Comparison of characteristics roots of reduced order and unreduced
TPP modes at hover (effect of hinge offset).
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Figure 11.- Comparison of characteristic roots of reduced order and unreduced
TPP modes at hover (effect of hinge restraint).
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Figure 12.- Comparison of characteristics roots of reduced order and unreduced
TPP modes at hover (effect of pitch-flap coupling).
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(b) Longitudinal flapping.

Figure 13.- Comparison of responses of the reduced and unreduced order to unit
step input in longitudinal cyclic (K; = Kp=e=0, u=0.3, v =8).

52



LATERAL FLAPPING, b,, deg

FLAPPING, 3 (t), deg

a

REDUCED ORDER

I | |

4 .6
TIME, sec

[N

(¢) Lateral flapping.

-1.2 [—

-16

REDUCED

ORDER
| | |

2 4 .6
TIME, sec

(d) Flapping-

Figure 13.- Concluded.
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Figure 1l4.- Comparison of responses of the reduced and unreduced order TPP
dynamics to unit step input in longitudinal cyclic (K; = KB = 0, ¢ = 0.15,
w=0.3 v =8).
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Figure 15.- Pitch-flap coupling required for decoupling flapping due to
aircraft angular rate for center-hinged rotor at hover.
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Figure 16.- Pitch-flap coupling required for decoupling flapping due to
aircraft angular rate at hover.
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Figure 17.- Hinge offset required to decouple flapping due to aircraft angular
rate at hover.
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